HOMOCLINIC SOLUTIONS OF NONLINEAR LAPLACIAN DIFFERENCE EQUATIONS WITHOUT AMBROSETTI-RABINOWITZ CONDITION  

在线阅读下载全文

作  者:Antonella NASTASI Stepan TERSIAN Calogero VETRO 

机构地区:[1]University of Palermo,Department of Mathematics and Computer Science,Via Archirafi 34,90123,Palermo,Italy [2]Institute of Mathematics and Informatics,Bulgarian Academy of Sciences,1113 Sofia,Bulgaria

出  处:《Acta Mathematica Scientia》2021年第3期712-718,共7页数学物理学报(B辑英文版)

基  金:supported by the Bulgarian National Science Fund under Project DN 12/4 “Advanced analytical and numerical methods for nonlinear differential equations with applications in finance and environmental pollution”, 2017。

摘  要:The aim of this paper is to establish the existence of at least two non-zero homoclinic solutions for a nonlinear Laplacian difference equation without using AmbrosettiRabinowitz type-conditions. The main tools are mountain pass theorem and Palais-Smale compactness condition involving suitable functionals.

关 键 词:Difference equations homoclinic solutions non-zero solutions (p q)-Laplacian operator 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象