铁路客票系统人像检索平台构建与关键技术研究  被引量:11

Construction of Face Retrieval Platform on Railway Ticket System and Its Key Technologies

在线阅读下载全文

作  者:李贝贝[1] 朱建生 阎志远 戴琳琳 候亚伟 LI Beibei;ZHU Jiansheng;YAN Zhiyuan;DAI Linlin;HOUYawei(Postgraduate Department,China Academy of Railway Sciences,Beijing 100081,China;Institute of Computing Technologies,China Academy of Railway Sciences Corporation Limited,Beijing 100081,China)

机构地区:[1]中国铁道科学研究院研究生部,北京100081 [2]中国铁道科学研究院集团有限公司电子计算技术研究所,北京100081

出  处:《铁道运输与经济》2021年第5期58-63,91,共7页Railway Transport and Economy

基  金:中国铁道科学研究院集团有限公司科研项目(2020YJ172);中国国家铁路集团有限公司科技研究开发计划课题(J2020X001)。

摘  要:铁路电子客票的实施,实现了旅客无纸化出行的需要,但是在进出站、检票乘车等环节,还需要通过刷身份证或者扫二维码等感知式载体方式进行。人像检索技术用于在人像底库中寻找相似度高的人像,具有非接触、无感知等应用特点,可实现旅客进出车站环节的无障碍通行。分析铁路客票系统人像检索平台构建场景应用需求,结合人像检索技术对平台进行系统架构和功能架构设计。在此基础上,研究和探讨铁路客票系统人像检索平台中的人像检索技术、人像底库数据流及人像建桶技术等技术要点。通过人像检索平台的应用分析,提升铁路客运生产力,创新旅客出行体验。Railway electronic ticket has met the needs for paperless travel of passengers. However, perceptional information carriers such as the ID card and the QR code are still necessary during station entering or leaving, ticket checking, boarding, etc. Owning to the characteristics of non-contact and non-perception, the face retrieval technology is used to search the highly similar portrait in the image database, which can achieve the barrier-free travel of passengers when they enter or leave the station. On the basis of the face retrieval technology, the system architecture and function architecture of face retrieval platform on railway ticket system were designed in this study after the analysis of scenario application requirements. Further, the key technologies of the platform construction, including face retrieval, data flow in image database and face bucket construction, were discussed. This study also analyzed the applications of the face retrieval platform in hopes of enhancing the productivity of railway passenger transport and innovating passengers’ travel experience.

关 键 词:铁路客票系统 人像检索 相似度人像 人脸桶 旅客出行体验 

分 类 号:U293.22[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象