Total versus quantum correlations in a two-mode Gaussian state  被引量:1

在线阅读下载全文

作  者:Jamal EI Qars 

机构地区:[1]Department of Physics,Faculty of Applied Sciences,Ait-Melloul,Ibn Zohr University,Agadir,Morocco [2]EPTHE,Department of Physics,Faculty of Sciences,Ibn Zohr University,Agadir,Morocco [3]LPHE-MS,Department of Physics,Faculty of Sciences,Mohammed V University,Rabat,Morocco

出  处:《Communications in Theoretical Physics》2021年第5期38-45,共8页理论物理通讯(英文版)

基  金:I am particularly indebted to an anonymous referee for constructive critiques and insightful comments.

摘  要:In Li and Luo(2007 Phys.Rev.A 76032327),the inequality(1/2)T≥Q was identified as a fundamental postulate for a consistent theory of quantum versus classical correlations for arbitrary measures of total T and quantum Q correlations in bipartite quantum states.Besides,Hayden et al(2006 Commun.Math.Phys.26595)have conjectured that,in some conditions within systems endowed with infinite-dimensional Hilbert spaces,quantum correlations may dominate not only half of total correlations but total correlations itself.Here,in a two-mode Gaussian state,quantifying T and Q respectively by the quantum mutual information I~G and the entanglement of formation(EoF)ε_(F)^(G),we verify thatε_(F)^(G),is always less than(1/2)I_(R)^(G( when I~G andε_(F)^(G) are defined via the Rényi-2 entropy.While via the von Neumann entropy,ε_(F,V)^(G),may even dominate I_(V)^(G) itself,which partly consolidates the Hayden conjecture,and partly,provides strong evidence hinting that the origin of this counterintuitive behavior should intrinsically be related to the von Neumann entropy by which the EoFε_(F,V)^(G),is defined,rather than related to the conceptual definition of the EoFε_(F).The obtained results show that—in the special case of mixed two-mode Gaussian states—quantum entanglement can be faithfully quantified by the Gaussian Rényi-2 EoFε_(F,R)^(G),.

关 键 词:ENTANGLEMENT von Neumann and Rényi-2 entropies quantum mutual information Gaussian states spontaneous emission laser 

分 类 号:O413[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象