检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:闫平[1,2,3] 季生太 纪仰慧 曲辉辉[3] 于瑛楠[3] 王铭[3] 初征[3] Yan Ping;Ji Shengtai;Ji Yanghui;Qu Huihui;Yu Yingnan;Wang Ming;Chu Zheng(Meteorological Academician Workstation of Heilongjiang Province,Harbin 150030,Heilongjiang,China;Innovation and Opening Laboratory of Regional Eco-meteorology in Northeast,China Meteorological Administration,Harbin 150030,Heilongjiang,China;Heilongjiang Province Institute of Meteorological Sciences,Harbin 150030,Heilongjiang,China;Heilongjiang Ecometeorological Center,Harbin 150030,Heilongjiang,China)
机构地区:[1]黑龙江省气象院士工作站,哈尔滨150030 [2]中国气象局东北地区生态气象创新开放实验室,哈尔滨150030 [3]黑龙江省气象科学研究所,哈尔滨150030 [4]黑龙江省生态气象中心,哈尔滨150030
出 处:《农学学报》2021年第6期78-89,共12页Journal of Agriculture
基 金:东北区域气象中心科技创新联合攻关项目“粮食主产区重大复合农业气象灾害监测预警评估技术与应用研究”(2019QYLH3);中国气象局东北地区生态气象创新开放实验室基金项目“基于作物分期播种试验的气象指标验证”(stqx2019zd01),“基于遥感干旱因子的多元信息融合的大兴安岭森林火险指数模型研究”(stqx201803),“基于卫星遥感的秸秆露天焚烧污染物排放动态监测”(stqx201705)。
摘 要:玉米是黑龙江省第一大作物,因热量资源的限制,抢前抓早播种是玉米高产的重要措施,而研究玉米地温预测方法,进而预测玉米适宜播种期,可以指导大田玉米科学早播,为玉米安全生产提供保障。利用2007—2017年黑龙江省80个气象观测站气温、地温、风速预报资料,采用多元回归分析方法,构建玉米春播期10 cm地温逐日预测模型,并开发了玉米春播期日平均10 cm地温预报系统。利用2007—2012年观测数据及预报数据开展回代检验,利用2018—2020年观测数据及预报数据开展大田应用检验。结果表明:该系统预测的当日地温、未来1日地温、未来2日地温预报效果较好,虽然未来3日预报效果略差,但是预报升降温趋势准确。根据预测模型开发的地温预报系统,操作简单,预报结果以图形和表格2种方式存储,应用直观方便,能够满足业务服务需求。Maize is the most important crop in Heilongjiang Province,because of the limitation of heat resources,it is essential to sow early to achieve high yield.The study on the prediction method of maize ground temperature and the prediction of suitable maize sowing date could guide the early sowing of maize in field and guarantee maize safety production in the province.Based on the prediction data of temperature,ground temperature and wind speed of 80 weather stations in Heilongjiang from 2007 to 2017,we established a daily prediction model of 10 cm ground temperature in spring sowing period of maize by using multiple regression analysis method,and developed a 10 cm ground temperature prediction system.We used the observation data and forecast data from 2007 to 2012 to carry out the return test,and the observation data and forecast data from 2018 to 2020 to carry out the field application test.The results showed that the prediction of the ground temperature of the day,the next day and the next two days were relatively good.Although the prediction of the ground temperature of the next three days was slightly worse,the prediction of temperature rise and fall trend was accurate.The ground temperature prediction system developed according to the prediction model is easy to operate,and the prediction results could be stored in two ways of graph and table for easy application to business services.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222