基于LFM信号信道估计的水声MPSK信号盲Turbo均衡方法  

Blind Turbo Equalization Method for Underwater Acoustic MPSK Signal Based on LFM Signal Channel Estimation

在线阅读下载全文

作  者:郭悦 王彬[1] 孟钰婷 GUO Yue;WANG Bin;MENG Yuting(Information Engineering University,Zhengzhou 450001,China)

机构地区:[1]信息工程大学,河南郑州450001

出  处:《信息工程大学学报》2021年第2期129-135,共7页Journal of Information Engineering University

基  金:国家自然科学基金计划资助项目(61602511)。

摘  要:为提高水声多进制相移键控(Multiple Phase Shift Keying,MPSK)信号盲解调过程中的信道失真补偿能力,提出一种利用水声线性调频(Linear Frequency Modulation,LFM)信号进行信道盲估计的水声MPSK信号的盲Turbo均衡方法。该方法利用水声通信的前导LFM信号进行信道参数盲估计,估计结果作为软干扰抵消的最小均方误差(Soft Interference Cancellation MMSE,SIC-MMSE)均衡器的关键参数,通过Turbo迭代实现对MPSK信号盲Turbo均衡。与传统Turbo盲均衡算法相比,该方法充分利用了水声通信的结构特点,在低信噪比时可以获得较为准确的信道估计值,适用于非合作通信。借助Turbo均衡迭代均衡和译码过程,进一步提升了MPSK水声通信的可靠性。仿真实验结果验证了方法的有效性。To improve the channel distortion compensation ability in blind demodulation of underwater acoustic multiple phase shift keying(MPSK)signal,a blind Turbo equalization method of underwater acoustic MPSK signal is proposed,utilizing underwater linear frequency modulation(LFM)signal for blind channel estimation.First,LFM signal(the preamble of underwater acoustic communication)is used for blind channel parameter estimation,and the estimation result is taken as the key parameter of soft interference cancellation MMSE(SIC-MMSE)equalizer.Then the blind turbo equalization of MPSK signal is performed by turbo iteration.Compared with traditional turbo blind equalization algorithms,this method makes full use of the structural characteristics of underwater acoustic communication.It is suitable for non-cooperative communication.Furthermore,it can obtain more accurate channel estimation at low SNR.With turbo equalization which iterates equalization and decoding,the reliability of MPSK underwater acoustic communication is further improved.Simulation result verifies the effectiveness of the proposed method.

关 键 词:水声通信 信道盲估计 盲Turbo均衡 

分 类 号:TN911.5[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象