检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴越 杨延竹[1] 苏雪龙 韩阜益 WU Yue;YANG Yanzhu;SU Xuelong;HAN Fuyi(College of Mechanical Engineering,Donghua University,Shanghai 201620,China;Department of Asset Management,Donghua University,Shanghai 201620,China;Shanghai Merchant Ship Design and Research Institute,Shanghai 201203,China)
机构地区:[1]东华大学机械工程学院,上海201620 [2]东华大学资产管理处,上海201620 [3]上海船舶研究设计院,上海201203
出 处:《东华大学学报(自然科学版)》2021年第3期84-89,共6页Journal of Donghua University(Natural Science)
摘 要:对钢板表面常见缺陷和现有的基于深度学习的表面缺陷检测算法进行分析,选用Faster RCNN(region-based convolutional neural network)模型对钢板表面缺陷进行检测。由于Faster RCNN中的RoI Pooling池化操作产生的像素偏差和空间位置偏差会影响检测精度,选用在小缺陷细节特征上表现更好的RoI Align作为改进Faster R-CNN的特征池化模块。在PyTorch框架上对YOLOv3、Faster R-CNN和改进Faster R-CNN模型进行训练与测试,结果表明,改进Faster RCNN的平均检测精度为87.14%,相比YOLOv3和Faster R-CNN检测精度分别提高4.81%和2.07%,对于小缺陷的检测精度的提高更为显著。The Faster R-CNN(region-based convolutional neural network)model was selected for the detection of surface defects on steel plates by analyzing common defects on steel plate surfaces and existing deep learning-based surface defect detection algorithms.Since the pixel bias and spatial location bias generated by the RoI Pooling operation in Faster R-CNN affected the detection accuracy,RoI Align was selected as the feature pooling module to improve Faster R-CNN because of its better performance on small defect detail features.The YOLOv3,Faster R-CNN and improved Faster R-CNN models were trained and tested on the PyTorch framework.The results show that the average detection accuracy of the improved Faster R-CNN is 87.14%,which is 4.81%and 2.07%higher than those of YOLOv3 and Faster R-CNN respectively,and the improvement of detection accuracy for small defects is more significant.
关 键 词:钢板缺陷检测 深度学习 Faster R-CNN RoI Align
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229