A Real-Time Multi-Vehicle Tracking Framework in Intelligent Vehicular Networks  被引量:2

在线阅读下载全文

作  者:Huiyuan Fu Jun Guan Feng Jing Chuanming Wang Huadong Ma 

机构地区:[1]Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia,Beijing University of Posts and Telecommunications,Beijing 100876,China [2]Horizon Robotics,Beijing 100080,China

出  处:《China Communications》2021年第6期89-99,共11页中国通信(英文版)

基  金:This work was supported in part by the Beijing Natural Science Foundation(L191004);the National Natural Science Foundation of China under No.61720106007 and No.61872047;the Beijing Nova Program under No.Z201100006820124;the Funds for Cre ative Research Groups of China under No.61921003,and the 111 Project(B18008).

摘  要:In this paper,we provide a new approach for intelligent traffic transportation in the intelligent vehicular networks,which aims at collecting the vehicles’locations,trajectories and other key driving parameters for the time-critical autonomous driving’s requirement.The key of our method is a multi-vehicle tracking framework in the traffic monitoring scenario..Our proposed framework is composed of three modules:multi-vehicle detection,multi-vehicle association and miss-detected vehicle tracking.For the first module,we integrate self-attention mechanism into detector of using key point estimation for better detection effect.For the second module,we apply the multi-dimensional information for robustness promotion,including vehicle re-identification(Re-ID)features,historical trajectory information,and spatial position information For the third module,we re-track the miss-detected vehicles with occlusions in the first detection module.Besides,we utilize the asymmetric convolution and depth-wise separable convolution to reduce the model’s parameters for speed-up.Extensive experimental results show the effectiveness of our proposed multi-vehicle tracking framework.

关 键 词:multiple object tracking vehicle detection vehicle re-identification single object tracking machine learning 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] U463.6[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象