Reinforcement Learning-Based Sensitive Semantic Location Privacy Protection for VANETs  被引量:6

在线阅读下载全文

作  者:Minghui Min Weihang Wang Liang Xiao Yilin Xiao Zhu Han 

机构地区:[1]Department of Information and Communication Engineering,Xiamen University,Xiamen 361005,China [2]School of Information and Control Engineering,China,University of Mining and Technology,Xuzhou 221116,China [3]The Affiliated Hospital of China University of Mining and Technology,Xuzhou 221116,China [4]Department of Electrical and Computer Engineering,University of Houston,Houston TX 77004,USA [5]Beijing Key Laboratory of Mobile Computing and Pervasive Device,No.6 Kexueyuan South Road,Beijing 100190,China

出  处:《China Communications》2021年第6期244-260,共17页中国通信(英文版)

基  金:This work was supported in part by National Natural Science Foundation of China under Grant 61971366 and 61771474,and in part by the Fundamental Research Funds for the central universities No.20720200077,and in part by Major Science and Technology Innovation Projects of Shandong Province 2019JZZY020505 and Key R&D Projects of Xuzhou City KC18171,and in part by NSF EARS-1839818,CNS1717454,CNS-1731424,and CNS-1702850.

摘  要:Location-based services(LBS)in vehicular ad hoc networks(VANETs)must protect users’privacy and address the threat of the exposure of sensitive locations during LBS requests.Users release not only their geographical but also semantic information of the visited places(e.g.,hospital).This sensitive information enables the inference attacker to exploit the users’preferences and life patterns.In this paper we propose a reinforcement learning(RL)based sensitive semantic location privacy protection scheme.This scheme uses the idea of differential privacy to randomize the released vehicle locations and adaptively selects the perturbation policy based on the sensitivity of the semantic location and the attack history.This scheme enables a vehicle to optimize the perturbation policy in terms of the privacy and the quality of service(QoS)loss without being aware of the current inference attack model in a dynamic privacy protection process.To solve the location protection problem with high-dimensional and continuous-valued perturbation policy variables,a deep deterministic policy gradientbased semantic location perturbation scheme(DSLP)is developed.The actor part is used to generate continuous privacy budget and perturbation angle,and the critic part is used to estimate the performance of the policy.Simulations demonstrate the DSLP-based scheme outperforms the benchmark schemes,which increases the privacy,reduces the QoS loss,and increases the utility of the vehicle.

关 键 词:semantic location sensitivity locationbased services VANET differential privacy reinforcement learning 

分 类 号:TP309[自动化与计算机技术—计算机系统结构] TP18[自动化与计算机技术—计算机科学与技术] U463.6[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象