Data-based flatness prediction and optimization in tandem cold rolling  被引量:8

在线阅读下载全文

作  者:Jie Sun Peng-fei Shan Zhen Wei Yao-hui Hu Qing-long Wang Wen Peng Dian-hua Zhang 

机构地区:[1]State Key Laboratory of Rolling and Automation,Northeastern University,Shenyang 110819,Liaoning,China [2]Department of Mechanical Engineering,North China Electric Power University,Baoding 071003,Hebei,China

出  处:《Journal of Iron and Steel Research International》2021年第5期563-573,共11页

基  金:This study is financially supported by the National Key Research and Development Program of China(No.2017YFB0304100);the National Natural Science Foundation of China(Nos.51774084,51704067,and 51634002);the Fundamental Research Funds for the Central Universities(Nos.N160704004,N170708020,and N2004010);Liaoning Revitalization Talents Program(XLYC1907065).

摘  要:In cold rolling process,the flatness actuator efficiency is the basis of the flatness control system.The precision of flatness is determined by the setpoints of flatness actuators.In the presence of modeling uncertainties and unmodeled nonlinearities in rolling process,it is difficult to obtain efficiency factors and setpoints of flatness actuators accurately.Based on the production data,a method to obtain the flatness actuator efficiency by using partial least square(PLS)combined with orthogonal signal correction(OSC)was adopted.Compared with the experiential method and principal component analysis method,the OSC-PLS method shows superior performance in obtaining the flatness actuator efficiency factors at the last stand.Furthermore,kernel partial least square combined with artificial neural network(KPLS-ANN)was proposed to predict the flatness values and optimize the setpoints of flatness actuators.Compared with KPLS or ANN,KPLS-ANN shows the best predictive ability.The root mean square error,mean absolute error and mean absolute percentage error are 0.51 IU,0.34 IU and 0.09,respectively.After the setpoints of flatness actuators are optimized,KPLS-ANN shows better optimization ability.The result in an average flatness standard deviation is 2.22 IU,while the unoptimized value is 4.10 IU.

关 键 词:Cold rolling Flatness actuator efficiency Data-driven prediction Partial least square Flatness control optimization 

分 类 号:TG335.12[金属学及工艺—金属压力加工]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象