检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王宝顺[1] 何浩祥[1] 闫维明[1] WANG Bao-shun;HE Hao-xiang;YAN Wei-ming(Beijing Key Laboratory of Earthquake Engineering and Structural Retrofit,Beijing University of Technology,Beijing 100124,China)
机构地区:[1]北京工业大学工程抗震与结构诊治北京市重点试验室,北京100124
出 处:《工程力学》2021年第6期191-208,共18页Engineering Mechanics
基 金:国家自然科学基金项目(51978021,51878017);国家重点研发计划项目(2017YFC1500604,2017YFC1500603)。
摘 要:针对调谐质量阻尼器(TMD)和颗粒阻尼器的减振特点及各自不足,提出将并联式单向单颗粒阻尼器(PSSPD)与TMD有机结合的复合减振技术方案—PSSPD与TMD并联体系。在深入剖析其减振特性的基础上,将颗粒与受控结构之间的碰撞力等效为脉冲力,建立复合减振体系力学模型和方程。采用时域和频域结合的方法并对模型进行分析并求解,使求解过程直接、无需求解微分方程且易于求解特殊激励形式动力响应。提出简谐激励下复合减振结构系统的最优减振参数设计方法,对该系统进行性能参数分析,验证了力学模型的精度及优化方法的可行性。建立该复合减振体系在地震动下的参数优化方法并对其合理性和准确性进行验证。最后,对PSSPD、TMD及复合减振体系的减振机理、性能及减震效果进行深入分析。结果表明:基于时频域解析的复合减振体系力学模型能够直观体现其减振机理,求解过程清晰且精度高,参数优化分析方法合理、可行且准确;复合减振体系有效克服了TMD和PSSPD的不足,具有更佳的减震效果、更宽的减振频带及更强的鲁棒性。In the light of the characteristics and shortcomings of tuned mass damper(TMD)and particle damper,a combined damping scheme is proposed,which organically combines the parallel single-dimensional single particle damper(PSSPD)and TMD,i.e.,the composite damping system of PSSPD and TMD in parallel.Based on the in-depth analysis of its damping mechanism,the impact force between the particles and the controlled structure is equivalent to the pulse force,and the mechanical model and vibration equation of the composite damping system are established.Firstly,the combination of time domain and frequency domain method has the outstanding characteristics,such as direct solving process,no need to solve differential equations and easy to solve the dynamic response subjected to special excitation forms,so this method is used to analyze and solve the model.Then the performance parameters of the system are analyzed,and the accuracy of the mechanical model and the feasibility of the optimization method are verified.Secondly,the parameter optimization method of the composite damping system subjected to ground motions is established and its rationality and accuracy are verified.Finally,the damping mechanism,performance and damping effect of PSSPD,TMD and composite damping system are compared and analyzed.The results show that the mechanical model of composite damping system based on time-frequency domain analysis can intuitively represent its damping mechanism with high accuracy and clear solution process,and the parameter optimization analysis method is reasonable,feasible and accurate.Meanwhile,the composite damping system effectively overcomes the shortcomings of TMD and PSSPD,and has better damping effect,wider damping frequency band and stronger robustness.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42