Acyclic 6-choosability of Planar Graphs without 5-cycles and Adjacent 4-cycles  

在线阅读下载全文

作  者:Lin SUN 

机构地区:[1]School of Mathematics and Statistics,Lingnan Normal University,Zhanjiang 524000,P.R.China

出  处:《Acta Mathematica Sinica,English Series》2021年第6期992-1004,共13页数学学报(英文版)

基  金:Supported by Guangdong Province Basic and Applied Basic Research Foundation and Joint Foundation Project(Grant No.2019A1515110324);Natural Science Foundation of Guangdong province(Grant No.2019A1515011031);University Characteristic Innovation Project of Guangdong province(Grant No.2019KTSCX092)。

摘  要:A proper vertex coloring of a graph is acyclic if every cycle uses at least three colors.A graph G is acyclically k-choosable if for any list assignment L={L(v):v∈V(G)}with|L(v)|≥k for all v∈V(G),there exists a proper acyclic vertex coloringφof G such thatφ(v)∈L(v)for all v∈V(G).In this paper,we prove that if G is a planar graph and contains no 5-cycles and no adjacent 4-cycles,then G is acyclically 6-choosable.

关 键 词:Planar graph acyclic coloring acyclic choosability 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象