人工智能作者资格之证伪  

Falsification of Artificial Intelligence Author Qualification

在线阅读下载全文

作  者:刘春霖[1] 李祎璠 LIU Chun-lin;LI Yi-fan(School of Law,Hebei University of Economics and Business,Shijiazhuang 050061,China)

机构地区:[1]河北经贸大学法学院,河北石家庄050061

出  处:《河北科技大学学报(社会科学版)》2021年第2期36-42,共7页Journal of Hebei University of Science and Technology:Social Sciences

基  金:河北省高等学校人文社会科学研究重点项目(SD2021046)。

摘  要:人工智能因具有“深度学习”能力,拥有类似人类的“智能”,它是否能够成为“作者”而对自己“创作”的作品享有权利,是当前著作权法面临的一大难题。对于人工智能作者资格的认定,应从现有著作权理论出发,重新审视作者资格与法律主体的关系,以寻求人工智能作者资格的证成路径。作者资格表现为法律作者与作品之间的联接,对其认定本质上是一种价值判断。法律主体是法律作者的外延概念,一方面,直接赋予人工智能法律主体资格欠缺实证基础和历史正当性基础;另一方面,人工智能也因法律和法理上的逻辑矛盾不能类比法人成为拟制主体。在“法典化”时代,对人工智能的定位应为法权模型中的法律关系客体,不宜成为作者。Due to its deep learning ability and human-like intelligence,whether artificial intelligence can be an"author"and enjoy the right to its"created"works is a big problem faced by the current copyright law.The author qualification of artificial intelligence should be ascertained from the existing copyright theory,and the relationship between author qualification and legal subject should be rethought examined,so as to seek the way to prove the author qualification of artificial intelligence.Author qualification is the connection between legal author and works,which is essentially a value judgment.The legal subject is the extension concept of the legal author.On the one hand,it is lack of empirical basis and historical legitimacy basis to give artificial intelligence legal subject qualification directly;on the other hand,because of the logical contradiction between law and jurisprudence,artificial intelligence cannot be compared with legal person as the subject of fiction.In the age of codification,the orientation of artificial intelligence should be the object of legal relations in the model of legal rights,but not the author.

关 键 词:人工智能 客体 法律主体资格 拟制主体 作者 

分 类 号:D923.41[政治法律—民商法学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象