MIMO-NOMA系统中基于近邻传播的用户分簇算法  被引量:2

Affinity Propagation Based User Clustering Algorithm in MIMO-NOMA Systems

在线阅读下载全文

作  者:王杰 付安琦 余开文 WANG Jie;FU An-qi;YU Kai-wen(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Key Laboratory of New Generation Broadband Mobile Communications,Chongqing 400065,China)

机构地区:[1]重庆邮电大学通信与信息工程学院,重庆400065 [2]新一代宽带移动通信重点实验室,重庆400065

出  处:《小型微型计算机系统》2021年第6期1327-1331,共5页Journal of Chinese Computer Systems

基  金:国家科技重大专项基金项目(2018ZX03001026-002)资助.

摘  要:文中探讨了多输入多输出-非正交多址接入(Multiple-Input Multiple-Output Non-orthogonal Multiple Access,MIMO-NOM A)系统的用户分簇问题.针对现有用户分簇算法需要指定簇数的问题,提出了一种基于近邻传播的无监督机器学习用户分簇算法.仿真结果表明,提出的用户分簇算法在系统和速率上相较于对比算法具有显著的优势,同时算法不需要指定簇数,仅依赖于基站(Base Station,BS)处获取的信道状态信息(Channel State Information,CSI),便可将用户划分为多个簇,是一种方便且实用的算法.A user clustering problem in multiple-input multiple-output non-orthogonal multiple access(MIMO-NOMA)systems is discussed.For the problem that the existing user clustering algorithms need to specify the number of clusters,this article proposes an unsupervised machine learning user clustering algorithm based on affinity propagation.Simulation results showed that the algorithm proposed in this paper has significant advantages over the comparison algorithm in terms of system sum rate.At the same time,the algorithm does not need to specify the number of clusters,and can only divide the user into multiple clusters by relying on the CSI obtained at the BS,which is a convenient and practical algorithm.

关 键 词:MIMO NOMA 用户分簇 无监督机器学习 近邻传播 

分 类 号:TN929[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象