检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冯姣 陆昶谕 FENG Jiao;LU Chang-yu(College of Electronic and Information Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China)
机构地区:[1]南京信息工程大学电子与信息工程学院,南京210044
出 处:《计算机科学》2021年第S01期122-126,共5页Computer Science
基 金:国家自然科学基金(61501244)。
摘 要:随着多媒体技术的快速发展,跨媒体检索逐渐替代传统的单媒体检索成为主流的信息检索方式。现有跨媒体检索方法复杂度高,且不能充分挖掘数据的细节特征,在映射的过程中会产生偏移,难以学习到精准的数据关联。针对上述问题,提出了一种基于残差注意力网络的跨媒体检索方法。首先,为了更好地提取不同媒体数据的关键特征,同时简化跨媒体检索模型,提出了融入注意力机制的残差神经网络。然后,提出了跨媒体检索联合损失函数,通过约束网络的映射过程,增强网络的语义辨别能力,提高网络检索精度。实验结果表明,与现有的一些方法对比,本文提出的基于残差注意力网络的跨媒体检索方法能够较好地学习到不同媒体数据之间的关联,有效地提高了跨媒体检索的精度。With the rapid development of multimedia technology,cross-media retrieval has gradually replaced traditional single-media retrieval as the mainstream information retrieval method.Existing cross-media retrieval methods are highly complex,and cannot fully mine the detailed characteristics of the data,which will cause deviations in the mapping process,and it is difficult to learn accurate data associations.To solve the above problems,this paper proposes a cross-media retrieval method based on residualattention network(CR-RAN).First of all,in order to better extract the key features of different media data and simplify the cross-media retrieval model,this paper proposes a residual neural network incorporating the attention mechanism.Then this paper proposes a cross-media retrieval joint loss function,which enhances the semantic discrimination ability of the network and improves the accuracy of network retrieval by constraining the mapping process of the network.Experimental results show that,compared with some existing methods,the cross-media retrieval method based on residual attention network proposed in this paper can better learn the association between different media data and effectively improve the accuracy of cross-media retrieval.
关 键 词:跨媒体检索 注意力机制 残差神经网络 联合损失函数
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222