基于多模型的COVID-19传播研究  被引量:4

Research on Propagation of COVID-19 Based on Multiple Models

在线阅读下载全文

作  者:刘汉卿 康晓东[1] 高万春[2] 李博[1,3] 王亚鸽[1] 张华丽 白放 LIU Han-qing;KANG Xiao-dong;GAO Wan-chun;LI Bo;WANG Ya-ge;ZHANG Hua-li;BAI Fang(School of Medical Image Science,Tianjin Medical University,Tianjin 300202,China;Qianjiang Central Hospital Affiliated of Jishou University,Chongqing 409000,China;Tianjin Third Central Hospital,Tianjin 300170,China)

机构地区:[1]天津医科大学影像学院,天津300202 [2]吉首大学附属黔江中心医院,重庆409000 [3]天津市第三中心医院,天津300170

出  处:《计算机科学》2021年第S01期196-202,共7页Computer Science

基  金:京津冀协同创新项目(17YEXTZC00020)。

摘  要:COVID-19在短时间内传播至全国各省市,不仅严重影响了人民的正常生活以及社会经济,同时还在威胁着人民的生命安全,因此多模型COVID-19传播研究有明确的理论和现实意义。本研究依据公开数据,首先,基于小世界和无标度网络模型研究了节点传播控制;其次,利用改进的SEIR模型,结合武汉疫情趋势,将感染者分为有症状感染者和无症状感染者,加入住院和死亡状态,并分别进行正常社交行为、保持距离的社交行为以及隔离措施的社交行为3种情况下的仿真研究;最后,基于混沌模型对COVID-19感染水平与周期性进行了分析。数据仿真结果验证了以上模型具有好的适用性。The propagation of COVID-19 to all provinces and cities across the country in a short period of time has not only severely affected people’s normal life and social economy,but also threatened people’s lives.Therefore,multi-model COVID-19 transmission research has clear theories and realistic significance.This study is based on public data.First,the small-world and scale-free network models are used to study node propagation control.Secondly,the improved SEIR model is used in conjunction with the Wuhan epidemic trend to divide the infected into symptomatic and asymptomatic infections.The hospitalization and death states are joined,and simulation studies under three conditions are carried out:normal social behavior,social behavior to keep a distance,and social behavior of isolation measures,respectively.Finally,the level and periodicity of COVID-19 infection are analyzed based on the chaos model.The data simulation results verify that the above model has good applicability.

关 键 词:小世界网络 无标度网络 SEIR 混沌模型 COVID-19 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象