稀疏综合字典学习的小样本人脸识别  被引量:4

Sparse comprehensive dictionary learning for small-sample face recognition

在线阅读下载全文

作  者:狄岚 矫慧文 梁久祯[3] DI Lan;JIAO Huiwen;LIANG Jiuzhen(School of Artificial Intelligence and Computer Science,Jiangnan University,Wuxi 214122,China;Laboratory of Ministry of Public Security for Road Traffic Safety,Wuxi 214151,China;School of Information Science and Engineering,Changzhou Uni-versity,Changzhou 213164,China)

机构地区:[1]江南大学人工智能与计算机学院,江苏无锡214122 [2]道路交通安全公安部重点实验室,江苏无锡214151 [3]常州大学信息科学与工程学院,江苏常州213164

出  处:《智能系统学报》2021年第2期218-227,共10页CAAI Transactions on Intelligent Systems

基  金:江苏省研究生科研与实践创新计划项目(KYCX19_1895);道路交通安全公安部重点实验室开放课题(2020ZDSYSKFKT03-2,A类).

摘  要:传统以字典学习为基础的小样本人脸识别方法存在字典低辨别性、弱鲁棒性等缺点,对此,本文提出稀疏综合字典学习模型。该模型有效利用和生成人脸变化,以镜像原理及Fisher准则扩充训练样本多样性,通过构造混合特色字典、扩充干扰字典以及低秩字典原子,提取不同类别数据之间的共性、特殊性和异常情况,从而提高算法识别率以及对表情变化、姿态变化、遮挡等异常情况的处理能力。在AR、YALEB、LFW等人脸数据库进行仿真实验,实验结果验证了算法的有效性和可行性。Traditional small-sample face recognition methods based on dictionary learning have disadvantages such as poor dictionary discrimination and lack of robustness.In this paper,we propose a sparse comprehensive dictionary learning model.This model effectively utilizes and generates facial changes,expands the diversity of training samples by the mirror principle and Fisher's criterion,and extracts the commonalities,specialties,and anomalies between different categories of data by constructing a hybrid feature dictionary,extended interference dictionary,and low-rank dictionary atoms.This strategy improves the recognition rate of the algorithm and its ability to handle abnormal situations such as expression changes,pose changes,and occlusions.The results of simulation experiments performed on the face databases AR,YALEB,and LFW verify the effectiveness and feasibility of the proposed algorithm.

关 键 词:综合字典学习 人脸识别 类别特色字典 FISHER准则 小样本 图像扩充 镜像准则 扩充干扰字典 混合特色字典 低秩字典 

分 类 号:TP394[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象