基于GF-7遥感卫星的冬小麦面积精细化识别  被引量:2

Refined Identification of Winter Wheat Area Based on GF-7 Satellite Remote Sensing

在线阅读下载全文

作  者:万丛 孙智虎 梁治华 张锦水 WAN Cong;SUN Zhi-hu;LIANG Zhi-hua(Data Management Center,National Bureau of Statistics of the People’s Republic of China,Beijing 100826;China University of Geosciences(Beijing),Beijing 100083;Institute of Remote Sensing Science and Engineering,Faculty of Geographical Science,Beijing Normal University,Beijing 100875)

机构地区:[1]国家统计局数据管理中心,北京100826 [2]中国地质大学(北京),北京100083 [3]北京师范大学北京师范大学地理科学学部遥感科学与工程研究院,北京100875

出  处:《安徽农业科学》2021年第12期244-247,252,共5页Journal of Anhui Agricultural Sciences

基  金:国家高分辨率对地观测系统重大专项(民用部分)(11-Y20A16-9001-17/18)。

摘  要:2019年11月3日发射的GF-7号卫星是我国的第二颗亚米级、多角度民用商业卫星,其在农作物面积分布精细化识别方面潜力有待评估。依据2018年国家统计局数据,全国冬小麦播种面积占粮食作物总播种面积的19.23%,通过遥感手段准确识别冬小麦分布情况,是作物长势和作物估产等后续遥感产品准确评估的保证,对确保粮食安全具有极其重要的意义。通过支撑向量机和随机森林2种机器学习算法,分析高分七号亚米级光谱特征及其纹理特征对冬小麦的精细化识别能力。结果表明,基于影像光谱特征,SVM分类器取得了最优的分类精度,其中冬小麦识别精度为93.96%,总体精度为91.01%,Kappa系数为0.7632,面积精度为91.46%。GF-7 satellite launched on November 3,2019,is China’s second sub-meter multi-angle commercial satellite.Its potential in fine identification of crop area distribution needs to be evaluated.According to the data of the National Bureau of Statistics in 2018,the sown area of winter wheat accounts for 19.23%of the total sown area of grain crops.Accurate identification of winter wheat distribution by remote sensing means is the guarantee for accurate evaluation of crop growth and crop yield estimation and other follow-up remote sensing products,which is of great significance to ensure food security.In this research,support vector machine(SVM)and random forest machine learning algorithms were used to analyze the fine recognition ability of the spectral features and texture features of GF-7 images.The results showed that the SVM classifier achieves the optimal classification accuracy based on the spectral characteristics of the image.The recognition accuracy of winter wheat was 93.96%,the overall accuracy was 91.01%,the kappa coefficient was 0.7632,and the area accuracy was 91.46%.

关 键 词:GF-7 遥感 冬小麦 随机森林 支撑向量机 

分 类 号:S127[农业科学—农业基础科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象