检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郝玲 张佩[2] 史逸民 刘瑞翔 王伟健 朱云凤[1] Hao Ling
机构地区:[1]江苏省连云港市气象局,江苏连云港222006 [2]江苏省气象局,江苏南京210008
出 处:《江苏农业科学》2021年第12期162-168,共7页Jiangsu Agricultural Sciences
基 金:江苏省第五期“333高层次人才培养工程”项目(编号:BRA2019348)。
摘 要:利用江苏省统计局提供的全省75个县(市、区)1981—2018年的冬小麦产量,基于灰色系统滑动模型得到各县(市、区)冬小麦气象产量。采用K-means算法对全省各县(市、区)冬小麦气象产量进行聚类分析,将全省客观划分为南、北2个冬小麦种植区,区域连续且相互独立。通过C4.5决策树算法,基于130项前期春季气候因子对2个种植区的冬小麦气象产量“是否歉年”分别建立决策树预测模型。在北种植区冬小麦是否歉年的预测中,决策树模型的自学习准确率为82.0%,测试准确率为90.9%;在南种植区冬小麦是否歉年的预测中,决策树模型的自学习准确率为92.5%,测试准确率为91.67%。结果表明,K-means算法和C4.5算法对江苏省冬小麦气象产量区划和预测具有良好效果,可为江苏省冬小麦产量预测提供有意义的参考。
关 键 词:冬小麦 气象产量 种植区划 K-MEANS算法 C4.5算法 决策树预测模型
分 类 号:S162.53[农业科学—农业气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249