支持泛洪攻击检测的命名数据网PIT  被引量:1

Research on Pending Interest Table of Named Data Networking Supporting Interest Flooding Attack Detection

在线阅读下载全文

作  者:彭鹏 李卓 梁纪峰 马天祥 刘开华 PENG Peng;LI Zhuo;LIANG Ji-feng;MA Tian-xiang;LIU Kai-hua(School of Microelectronics,Tianjin University,Tianjin 300072,China;Electric Power Research Institute,Hebei Electric Power Corporation,Shijiazhuang 050021,China)

机构地区:[1]天津大学微电子学院,天津300072 [2]国网河北省电力有限公司电力科学研究院,石家庄050021

出  处:《北京邮电大学学报》2021年第2期61-67,共7页Journal of Beijing University of Posts and Telecommunications

基  金:河北省省级科技计划项目(20314301D);天津市科技计划项目(20JCQNJC01490);国家自然科学基金项目(61602346);天津大学自主创新基金项目(2020XRG-0102)。

摘  要:针对命名数据网待定兴趣转发表中高效的变长名称数据索引、硬件可支持的存储消耗以及兴趣包泛洪攻击检测等问题,提出了基于字符卷积神经网络的认知索引模型(C&I),该模型能够支持路由名称数据的分类、聚合,降低名称数据的存储消耗.同时,基于C&I提出了支持兴趣包泛洪攻击检测的待定兴趣转发表(PIT)存储结构C&IPIT及其数据检索算法,通过多级存储器部署方式,分别在片上和片下的存储器中部署索引结构及存储空间.实验结果表明,C&I-PIT在名称数据聚合、存储消耗、泛洪攻击检测等方面具有良好的性能.In order to solve the problems of efficient variable-length name lookup,hardware-supportable storage consumption,and detection of interest flooding attack in the pending interest table( PIT) of named data networking,an cognition and indexing model( C&I) based on character convolutional neural network is proposed. C&I can support the classification and aggregation of name data,and reduce the storage consumption of name data. At the same time,a pending interest table storage structure C&I-PIT based on C&I and its data retrieval algorithm,which supports the detection of interest flooding attack,is proposed. Through the deployment of multi-level memory,the index structure and storage space are respectively deployed on static random access memory and dynamic random access memory. Experiments show that C&I-PIT has good performance in name aggregation,memory consumption and interest flooding attack detection.

关 键 词:命名数据网 待定兴趣转发表 名称数据索引 字符卷积神经网络 兴趣包泛洪攻击 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象