基于粒子群优化的螺纹刀具磨损状态监测模型  被引量:3

Research on Wear Condition Monitoring Model for Thread Cutting Tools Based on Particle Swarm Optimization

在线阅读下载全文

作  者:吴瀚 赵亦希[1] 田昂 WU Han;ZHAO Yixi;TIAN Ang(School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

机构地区:[1]上海交通大学机械与动力工程学院,上海200240

出  处:《机械设计与研究》2021年第3期132-136,共5页Machine Design And Research

基  金:上海市2019年度人工智能创新发展专项(2019-RGZN-01026)。

摘  要:螺纹刀具的状态监测是制造加工中非常重要的问题。由于刀具振动信号具有复杂非线性、强耦合等关系,常用的基于支持向量机(SVM)的刀具监测模型由于参数的设置极其依赖人为经验,设置不当会导致监测的识别率不高,在刀具磨损状态判别中收到了限制。针对此难题,依据螺纹刀具的振动特性,结合改进的粒子群算法(PSO),采用异步更新学习因子策略实现刀具状态监测模型优化。结果表明,优化后的PSO-SVM刀具状态监测模型能够有效对SVM的关键参数进行寻优,异步更新学习因子也可加强模型在迭代后期的寻优能力,从而提高刀具状态监测识别的精度。Condition monitoring of thread cutting tools is vital in manufacturing.Due to the complex nonlinear and strong coupling relationship of the tools’vibration signal,the commonly used model for tools monitoring,which is primarily based on a Support Vector Machine(SVM),relies heavily on human experience,where improper settings can lead to a low recognition rate.Considering the vibration characteristics of thread cutting tools,the combination algorithm of Particle Swarm Optimization and SVM,together with the strategy of asynchronously updating learning factors,is adopted to optimize the process of conventional tools’condition monitoring model.Results show that the improved PSO-SVM model for condition monitoring can effectively optimize the key parameters of the SVM,while the asynchronously updating learning factor can enhance the optimization ability of the model at later stages of iteration,and thus the accuracy of tool condition monitoring is improved.

关 键 词:螺纹刀具 磨损状态监测 粒子群优化算法(PSO) 支持向量机(SVW) 异步更新学习因子 

分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象