检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]College of Life Sciences,Capital Normal University,Beijing 100048,China
出 处:《Avian Research》2021年第2期257-268,共12页鸟类学研究(英文版)
基 金:This work was supported by the National Natural Science Foundation of China(No.31471951).
摘 要:Background:As the major load-bearing structures,bones exhibit various properties related to mechanical perfor-mance to adapt to different locomotor intensities.The habits and ontogenetic changes of locomotion in animals can,thus,be explored by assessing skeletal mechanical performance.Methods:In this study,we investigated the growing femoral mechanical performance in an ontogenetic series of Cabot’s Tragopans(Tragopan caboti)and Pigeons(Columba livia domestica).Micro-computed tomography-based finite element analysis was conducted to evaluate the stress,strain,and strain energy density(SED)of femora under axial and radial loading.Results:Femora deflected medio-laterally and dorso-ventrally under axial and radial loading,respectively.Femora deformed and tensed more severely under radial loading than axial loading.In adult individuals,Cabot’s Tragopans had lower strain and SED than pigeons.During ontogeny,the strain and SED of pigeons decreased sharply,while Cabot’s Tragopans showed moderately change.The structural properties of hatchling pigeons are more robust than those of hatchling Cabot’s Tragopans.Conclusions:Limb postures have dominant effect on skeletal deformation.The erect posture is preferred by large mammals and birds to achieve a high safety factor of bones during locomotion.Adult Cabot’s Tragopans have stronger femora than pigeons,reflecting a better bone adaption to the terrestrial locomotion of the studied pheas-ant species.Changes in strain and SED during growth reflect the marked difference in locomotor ability between precocial and altricial hatchlings.The femora of hatchling Cabot’s Tragopans were built with better energy efficiency than deformation resistance,enabling optimized mechanical performance.In contrast,although weak in mechani-cal function at the time of hatching,pigeon femora were suggested to be established with a more mature structural design as a prerequisite for rapid growth.These results will be helpful for studies regarding developmental patterns of fossil avian spec
关 键 词:BIOMECHANICS Cabot’s Tragopan FEMUR Finite element analysis PIGEON
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.34