EWT-Elman组合模型短期电离层TEC预报  被引量:6

Short-Term Ionospheric TEC Prediction Using EWT-Elman Combination Model

在线阅读下载全文

作  者:鲁铁定[1] 黄佳伟 贺小星[2] 吕开云[1] LU Tieding;HUANG Jiawei;HE Xiaoxing;Lü Kaiyun(Faculty of Geomatics,East China University of Technology,418 Guanglan Road,Nanchang 330013,China;School of Civil Engineering and Architecture,East China Jiaotong University,808 East-Shuanggang Street,Nanchang 330013,China)

机构地区:[1]东华理工大学测绘工程学院,南昌市330013 [2]华东交通大学土木建筑学院,南昌市330013

出  处:《大地测量与地球动力学》2021年第7期666-671,共6页Journal of Geodesy and Geodynamics

基  金:国家自然科学基金(42061077,42064001,41904031);国家重点研发计划(2016YFB0501405,2016YFB0502601-04);江西省自然科学基金(2017BAB203032,20202BAB214029,20202BABL213003);江西省教育厅科学技术研究项目(GJJ204015)。

摘  要:针对电离层总电子含量(TEC)非线性、高噪声的特点,建立基于经验小波变换(EWT)和Elman神经网络的短期电离层组合预报模型。运用该模型对不同地磁环境的电离层TEC时间序列进行建模预报,结果表明,EWT-Elman组合模型可反映电离层TEC的变化特征,地磁平静期预测平均相对精度为93%,均方根误差为1.04 TECu;地磁扰动期预测平均相对精度为92.4%,均方根误差为2.18 TECu。单一Elman模型、EMD-Elman组合模型以及EWT-BP组合模型在地磁平静期平均相对精度最高为90.7%,均方根误差最小为1.33 TECu;地磁扰动期平均相对精度最高为90.7%,均方根误差最小为2.57 TECu。对比其他模型,本文方法预测效果最优。In view of the nonlinear and high noise characteristics of ionospheric total electron content(TEC),we establish a short-term ionospheric combination prediction model based on empirical wavelet transform(EWT)and Elman neural network.We use the model to forecast the ionospheric TEC time series in different geomagnetic environments.The results show that EWT-Elman combination model can reflect the variation characteristics of ionospheric TEC.The average relative accuracy of the combination model during geomagnetic quiescence is 93%,and the root mean square error is 1.04 TECu.During geomagnetic disturbance,the average relative accuracy is 92.4%,and the root mean square error is 2.18 TECu.The highest average relative accuracy of the single Elman model,EMD-Elman model and EWT-BP model is 90.7%,and the minimum root mean square error is 1.33 TECu during geomagnetic quiescence.The highest average relative accuracy is 90.7%,and the minimum root mean square error is 2.57 TECu during geomagnetic disturbance.Compared with other models,the method in this paper has the best prediction effect.

关 键 词:电离层总电子含量 经验小波变换 ELMAN神经网络 组合模型 短期预测 

分 类 号:P228[天文地球—大地测量学与测量工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象