Energy-efficient computing-in-memory architecture for AI processor: device, circuit, architecture perspective  被引量:3

在线阅读下载全文

作  者:Liang CHANG Chenglong LI Zhaomin ZHANG Jianbiao XIAO Qingsong LIU Zhen ZHU Weihang LI Zixuan ZHU Siqi YANG Jun ZHOU 

机构地区:[1]School of Information and Communication Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China

出  处:《Science China(Information Sciences)》2021年第6期41-55,共15页中国科学(信息科学)(英文版)

基  金:supported by National Key R&D Program of China (Grant No. 2019YFB2204500);UESTC Research Start-up Funding (Grant No. Y030202059018052)。

摘  要:An artificial intelligence(AI) processor is a promising solution for energy-efficient data processing, including health monitoring and image/voice recognition. However, data movements between compute part and memory induce memory wall and power wall challenges to the conventional computing architecture.Recently, the memory-centric architecture has been revised to solve the data movement issue, where the memory is equipped with the compute-capable memory technique, namely, computing-in-memory(CIM). In this paper, we analyze the requirement of AI algorithms on the data movement and low power requirement of AI processors. In addition, we introduce the story of CIM and implementation methodologies of CIM architecture. Furthermore, we present several novel solutions beyond traditional analog-digital mixed static random-access memory(SRAM)-based CIM architecture. Finally, recent CIM tape-out studies are listed and discussed.

关 键 词:energy efficiency computing-in-memory non-volatile memory test demonstrators AI processor 

分 类 号:TP332[自动化与计算机技术—计算机系统结构] TP18[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象