Suboptimal adaptive tracking control for FIR systems with binary-valued observations  被引量:3

在线阅读下载全文

作  者:Xiangquan LI Zhengguang XU Jiarui CUI Lixin ZHANG 

机构地区:[1]School of Automation and Electrical Engineering,University of Science and Technology Beijing,Beijing 100083,China [2]Key Laboratory of Knowledge Automation for Industrial Processes,Ministry of Education,Beijing 100083,China

出  处:《Science China(Information Sciences)》2021年第7期33-43,共11页中国科学(信息科学)(英文版)

基  金:This work was partly supported by National Natural Science Foundation of China(Grant No.61603034);Beijing Municipal Natural Science Foundation(Grant No.3182027);Fundamental Research Funds for the Central Universities of China(Grant No.FRF-GF-19-016B).

摘  要:In this paper,we investigate and analyze the suboptimal adaptive control for finite impulse response(FIR)systems with binary-valued observations.As the parameters of FIR systems are unknown and the measurable observations can only provide limited information,we propose and analyze a two-segment design method of an adaptive control law.First,we divide the system running time axis into many sections;each of these sections is divided into two segments.During the short segment,we design the system inputs for estimating parameters.Thus,we employ the empirical-measure-based technique for designing the identification algorithm.Second,we introduce a tracking control law to track a given target based on the system parameter estimates obtained in the short segment.We achieve this using the certainty equivalent principle in the long segment.As the length of short segments tends to infinity,we observe that the parameter estimation algorithm is consistent.However,when the length of segments tends to infinity,we find that the adaptive tracking control law is asymptotically suboptimal.Finally,we demonstrate the efficiency of the two-segment design method using the simulation results.

关 键 词:parameter identification FIR systems binary-valued observations asymptotically suboptimal tracking adaptive control 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象