检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Dong-Lin Hao Ze-Tu Gao Jian-Hua Yin
出 处:《Journal of the Operations Research Society of China》2014年第2期263-269,共7页中国运筹学会会刊(英文)
摘 要:Given a distribution of pebbles on the vertices of a connected graph G,a pebbling move on G consists of taking two pebbles off one vertex and placing one on an adjacent vertex.The t-pebbling number f_(t)(G)of a simple connected graph G is the smallest positive integer such that for every distribution of fteGT pebbles on the vertices of G,we can move t pebbles to any target vertex by a sequence of pebbling moves.Graham conjectured that for any connected graphs G and H,f_(1)(G×H)≤f1(G)f1(H).Herscovici further conjectured that fst(G×H)≤6 fseGTfteHT for any positive integers s and t.Wang et al.(Discret Math,309:3431–3435,2009)proved that Graham’s conjecture holds when G is a thorn graph of a complete graph and H is a graph having the 2-pebbling property.In this paper,we further show that Herscovici’s conjecture is true when G is a thorn graph of a complete graph and H is a graph having the 2t-pebbling property.
关 键 词:Thorn graph t-Pebbling number Graham’s conjecture Herscovici’s conjecture
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.217