检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Chhabi Lal CHIDI Wolfgang SULZER XIONG Dong-hong WU Yan-hong ZHAO Wei Pushkar Kumar PRADHAN
机构地区:[1]Central Department of Geography,Tribhuvan University,Kathmandu 44618,Nepal [2]Institute of Geography and Regional Science,University of Graz,A-801 Graz,Austria [3]Institute of Mountain Hazard and Environment,Chinese Academy of Science,Chengdu 610041,China [4]Kathmandu Center for Research and Education,Chinese Academy of Sciences-Tribhuvan University,Kathmandu 44618,Nepal
出 处:《Journal of Mountain Science》2021年第6期1504-1520,共17页山地科学学报(英文)
基 金:This study was financially supported by the CAS Overseas Institutions Platform Project(Grant No.131C11KYSB20200033)。
摘 要:Land use intensity is a valuable concept to understand integrated land use system, which is unlike the traditional approach of analysis that often examines one or a few aspects of land use disregarding multidimensionality of the intensification process in the complex land system. Land use intensity is based on an integrative conceptual framework focusing on both inputs to and outputs from the land. Geographers’ non-stationary data-analysis technique is very suitable for most of the spatial data analysis. Our study was carried out in the northeast part of the Andhikhola watershed lying in the Middle Hills of Nepal, where over the last two decades, heavy loss of labor due to outmigration of rural farmers and increasing urbanization in the relatively easy accessible lowland areas has caused agricultural land abandonment. Our intention in this study was to ascertain factors of spatial pattern of intensity dynamism between human and nature relationships in the integrated traditional agricultural system. High resolution aerial photo and multispectral satellite image were used to derive data on land use and land cover. In addition, field verification, information collected from the field and census report were other data sources. Explanatory variables were derived from those digital and analogue data. Ordinary Least Square(OLS) technique was used for filtering of the variables. Geographically Weighted Regression(GWR) model was used to identify major determining factors of land use intensity dynamics. Moran’s I technique was used for model validation. GWR model was executed to identify the strength of explanatory variables explaining change of land use intensity. Accordingly, 10 variables were identified having the greatest strength to explain land use intensity change in the study area, of which physical variables such as slope gradient, temperature and solar radiation revealed the highest strength followed by variables of accessibility and natural resource. Depopulation in recent decades has been a major driver of
关 键 词:Explanatory variable GWR model Land use intensity Multivariate analysis Spatial statistics
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145