An Improved Support Vector Clustering Approach to Dynamic Aggregation of Large Wind Farms  被引量:9

在线阅读下载全文

作  者:Weijun Teng Xifan Wang Yongqing Meng Wenhui Shi 

机构地区:[1]Department of Electrical Engineering,Xi’an Jiaotong University,Xi’an,China [2]China Electric Power Research Institute,Beijing 100192,China

出  处:《CSEE Journal of Power and Energy Systems》2019年第2期215-223,共9页中国电机工程学会电力与能源系统学报(英文)

基  金:This work has been supported by the projects of the SGCC.

摘  要:In this paper,we propose an improved support vector clustering(SVC)algorithm to cluster wind turbines(WTs)in a wind farm(WF).A boundary points(BPs)detecting method based on the grid theory and the connected subdomain(CS)are proposed.Thus the efficiency of SVC is enhanced while maintaining the accuracy of the algorithm.As for the multi-wind condition equivalent of WF,a method to determine the number and capacity of each of the aggregated wind turbines(AWTs)based on historical wind data is proposed.Only wind speed(WS)and wind direction(WD)of the WF are needed to calculate the WSs of each AWT.Results demonstrate that the algorithm proposed in this paper can cluster WTs quickly and accurately.And the dynamic aggregated models of the WFs are suitable for both the single-wind condition and multi-wind condition simulations,with high accuracy being obtained.

关 键 词:Connected subdomain dynamicaggregated model griddetection improvedSVC powersystem windfarm 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象