基于整群抽样和支持向量回归模型的高功率半导体激光器剩余使用寿命预测  被引量:7

RUL Prediction of High-power Semiconductor Lasers Based on Cluster Sampling and SVR Model

在线阅读下载全文

作  者:严建文 钟小虎[1,2,4] 范煜 郭三敏 YAN Jianwen;ZHONG Xiaohu;FAN Yu;GUO Sanmin(School of Management,Hefei University of Technology,Hefei,230009;Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment,Hefei University of Technology,Hefei,230009;School of Mechanical Engineering,Zhejiang University,Hangzhou,310058;Anhui Wanwei Group Co.,Ltd.,Hefei,238002)

机构地区:[1]合肥工业大学管理学院,合肥230009 [2]合肥工业大学航空结构件成形制造与装备安徽省重点实验室,合肥230009 [3]浙江大学机械工程学院,杭州310058 [4]安徽皖维集团有限责任公司,合肥238002

出  处:《中国机械工程》2021年第13期1523-1529,共7页China Mechanical Engineering

基  金:中央高校基本科研业务费专项资金(PA2019GDP K0048);安徽省博士后研究人员科研活动资助经费(2018B257)。

摘  要:剩余使用寿命(RUL)预测是高功率半导体激光器在各种环境应力作用下可靠性评估的核心问题。在实际应用中,现有支持向量回归(SVR)方法均侧重于保证所训练模型的回归曲线的整体误差最小,以追求方法的泛化性,这往往造成关键预警阶段特别是临近故障失效前的预测结果不理想,不能可靠地支持维护决策。提出了一种基于整群抽样的SVR模型训练方法,对测试样本后期观测数据进行多次整群抽样后用于SVR模型测试,SVR模型中的参数使得SVR模型对训练样本的后期数据拟合得更好。实例分析验证了该方法的有效性和稳健性,研究结果表明,所提方法的预测性能和实用价值优于现有几种代表性的小样本分析方法。RUL prediction was the core problem of reliability evaluation of high-power semiconductor lasers under various environmental stresses.In practical applications,the existing SVR methods all focused on minimizing the overall errors of the regression curve of the trained model,so as to pursue the generalization,which often resulted in unsatisfactory prediction results at the critical early warning stage,especially before the near-failure,and failed to ensure its reliability.Therefore,the SVR model training method was proposed based on cluster sampling.The observation data in the later period of the test samples were sampled for multiple cluster and then used for the SVR model test.The parameters in the SVR model made the SVR model fit the data in the later period of the training samples better.The effectiveness and robustness of the proposed method were verified by a case study,the results show that the performance and practical value of the proposed method are better than those of several representative small sample analysis methods.

关 键 词:剩余使用寿命预测 整群抽样 支持向量回归 半导体激光器 

分 类 号:TN207[电子电信—物理电子学] V443[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象