检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪永嘉 WANG Yong-jia(Scool of Automobile and Transportation Engineering,Hefei University of Technology,Hefei 230009,China)
机构地区:[1]合肥工业大学汽车与交通工程学院,安徽合肥230009
出 处:《控制工程》2021年第6期1075-1085,共11页Control Engineering of China
基 金:安徽省自然科学基金资助项目(1508085QE92)。
摘 要:针对轮毂电机驱动的电动汽车的横摆稳定性问题,提出了一种基于极限学习机(ELM)网络的直接横摆力矩控制方法。采用自适应积分终端滑模(AITSM)控制策略设计横摆角速度控制器,并通过ELM的快速在线学习能力实现在闭环系统中进行集总干扰估计和补偿。控制器的主要贡献在于,一是实现横摆角速度跟踪误差的有限时间收敛,二是引入了ELM扰动估计技术,减少了传统滑模控制对系统扰动先验知识的依赖。仿真结果表明,使用所提出的控制器策略,车辆横摆角速度跟踪精度和系统强鲁棒性得到了提升,实现了更好的车辆横摆稳定性和操控性能。Aiming at the problem of yaw stability for electric vehicle driven by hub motor,an extreme learning machine(ELM)based direct yaw-moment control method is proposed.An adaptive integral terminal sliding mode(AITSM)control strategy is adopted to design the yaw rate controller,and the estimation and compensation of the lumped interference are realized in the closed-loop system by the fast online learning capability of ELM.The main contributions of the proposed controller include two parts.One is the realization of the finite-time convergence of the yaw velocity tracking error,the other is the introduction of ELM disturbance estimation mechanism,which reduces the dependence of the traditional sliding mode control on the prior knowledge of system disturbance.The simulation results show that with the proposed control strategy,the tracking acuracy of the yaw rate and the robustness of the system are significantly improved so that better yaw stability and maneuverability for vehicles can be obtained.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147