A high-precision heuristic model to detect home and work locations from smart card data  被引量:4

在线阅读下载全文

作  者:Nilufer Sari Aslam Tao Cheng James Cheshire 

机构地区:[1]SpaceTimeLab,Department of Civil,Environmental and Geomatic Engineering,University College London,London,UK [2]Department of Geography,University College London,London,UK

出  处:《Geo-Spatial Information Science》2019年第1期1-11,共11页地球空间信息科学学报(英文)

基  金:This work was funded by the Economic and Social Research Council(ESRC)in the United Kingdom[grant number 1477365].

摘  要:Smart card-automated fare collection systems now routinely record large volumes of data comprising the origins and destinations of travelers.Processing and analyzing these data open new opportunities in urban modeling and travel behavior research.This study seeks to develop an accurate framework for the study of urban mobility from smart card data by developing a heuristic primary location model to identify the home and work locations.The model uses journey counts as an indicator of usage regularity,visit-frequency to identify activity locations for regular commuters,and stay-time for the classification of work and home locations and activities.London is taken as a case study,and the model results were validated against survey data from the London Travel Demand Survey and volunteer survey.Results demonstrate that the proposed model is able to detect meaningful home and work places with high precision.This study offers a new and cost-effective approach to travel behavior and demand research.

关 键 词:Smart card data activity location modeling heuristic primary location model home and work locations human mobility pattern urban activity pattern 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象