检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄冬梅 何立昂 孙锦中 胡安铎 HUANG Dongmei;HE Li'ang;SUN Jinzhong;HU Anduo(College of Electronics and Information Engineering,Shanghai University of Electric Power,Shanghai 201306,China;College of Electrical Engineering,Shanghai University of Electric Power,Shanghai 200090,China)
机构地区:[1]上海电力大学电子与信息工程学院,上海201306 [2]上海电力大学电气工程学院,上海200090
出 处:《电力系统保护与控制》2021年第13期1-9,共9页Power System Protection and Control
基 金:国家自然科学基金项目资助(41671431);上海市科委地方院校能力建设项目资助(20020500700)。
摘 要:虚假数据注入攻击(FDIA)作为新型的电网攻击手段,严重威胁智能电网的安全运行。爆炸式增长的数据给集中式的FDIA检测方法带来了巨大的挑战。基于此,提出了一种基于边缘计算的分布式检测方法。将系统拆分为多个子系统,且在子系统中设置边缘节点检测器进行数据的收集、检测。结合深度学习的方法,构建了CNN-LSTM模型检测器,提取数据特征,并将模型的训练过程放置在中心节点上,实现高效、低时延的FDIA检测。最后在IEEE 14节点和IEEE39节点测试系统中,设定不同攻击强度,对所提边缘检测方法进行验证。结果表明,与集中式的检测方法相比,所提边缘检测方法在检测时间和内存消耗两个指标上有明显的下降。A new method of power grid attack,the False Data Injection Attack(FDIA),seriously threatens the safe operation of smart grids.The explosive growth of data has brought huge challenges to centralized FDIA detection methods.This paper proposes a detection method based on edge computing,which divides the system into multiple subsystems,and sets edge node detectors in the subsystems for data collection and detection.Combined with deep learning methods,a CNN-LSTM detecting model is constructed to extract the characteristics of the data,and the training process of the model is placed on the central node to achieve efficient and low-latency FDIA detection.Finally,the proposed edge detection method is verified in the IEEE 14-node and IEEE 39-node test systems for different attack intensities.Compared with the centralized detection method,the results show that the advanced edge detection method can achieve a significant drop in detection time and memory consumption.
分 类 号:TM73[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171