检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Bo Leyang Shi Yuguang
出 处:《Science China Mathematics》2021年第7期1357-1372,共16页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China(National Key R&D Program of China)(Grant No.11731001);Postdoctoral Science Foundation of China(Grant No.2020M680171)。
摘 要:In this paper,we consider the problem of the nonnegative scalar curvature(NNSC)-cobordism of Bartnik data(∑_(1)^(n-1),γ_(1),H_(1))and(∑_(2)^(n-1),γ_(2),H_(2)).We prove that given two metricsγ_(1)andγ_(2)on S^(n-1)(3≤n≤7)with H_(1)fixed,then(S^(n-1),γ_(1),H_(1))and(S^(n-1),γ_(2),H_(2))admit no NNSC-cobordism provided the prescribed mean curvature H2 is large enough(see Theorem 1.3).Moreover,we show that for n=3,a much weaker condition that the total mean curvature∫_(s^(2))H_(2)dpγ_(2)is large enough rules out NNSC-cobordisms(see Theorem 1.2);if we require the Gaussian curvature ofγ_(2)to be positive,we get a criterion for nonexistence of the trivial NNSCcobordism by using the Hawking mass and the Brown-York mass(see Theorem 1.1).For the general topology case,we prove that(∑_(1)^(n-1),γ_(1),0)and(∑_(2)^(n-1),γ_(2),H_(2))admit no NNSC-cobordism provided the prescribed mean curvature H_(2)is large enough(see Theorem 1.5).
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.172.251