Nonexistence of the NNSC-cobordism of Bartnik data  

在线阅读下载全文

作  者:Bo Leyang Shi Yuguang 

机构地区:[1]Key Laboratory of Pure and Applied Mathematics,School of Mathematical Sciences,Peking University,Beijing 100871,China

出  处:《Science China Mathematics》2021年第7期1357-1372,共16页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China(National Key R&D Program of China)(Grant No.11731001);Postdoctoral Science Foundation of China(Grant No.2020M680171)。

摘  要:In this paper,we consider the problem of the nonnegative scalar curvature(NNSC)-cobordism of Bartnik data(∑_(1)^(n-1),γ_(1),H_(1))and(∑_(2)^(n-1),γ_(2),H_(2)).We prove that given two metricsγ_(1)andγ_(2)on S^(n-1)(3≤n≤7)with H_(1)fixed,then(S^(n-1),γ_(1),H_(1))and(S^(n-1),γ_(2),H_(2))admit no NNSC-cobordism provided the prescribed mean curvature H2 is large enough(see Theorem 1.3).Moreover,we show that for n=3,a much weaker condition that the total mean curvature∫_(s^(2))H_(2)dpγ_(2)is large enough rules out NNSC-cobordisms(see Theorem 1.2);if we require the Gaussian curvature ofγ_(2)to be positive,we get a criterion for nonexistence of the trivial NNSCcobordism by using the Hawking mass and the Brown-York mass(see Theorem 1.1).For the general topology case,we prove that(∑_(1)^(n-1),γ_(1),0)and(∑_(2)^(n-1),γ_(2),H_(2))admit no NNSC-cobordism provided the prescribed mean curvature H_(2)is large enough(see Theorem 1.5).

关 键 词:COBORDISM scalar curvature mean curvature 

分 类 号:O186.12[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象