On the generalized Chern conjecture for hypersurfaces with constant mean curvature in a sphere  被引量:2

在线阅读下载全文

作  者:Li Lei Hongwei Xu Zhiyuan Xu 

机构地区:[1]Center of Mathematical Sciences,Zhejiang University,Hangzhou 310027,China [2]Department of Mathematics,Hangzhou Normal University,Hangzhou 310036,China

出  处:《Science China Mathematics》2021年第7期1493-1504,共12页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China(Grant No.11531012);China Postdoctoral Science Foundation(Grant No.BX20180274);Natural Science Foundation of Zhejiang Province(Grant No.LY20A010024)。

摘  要:Let M be a compact hypersurface with constant mean curvature in Denote by H and S the mean curvature and the squared norm of the second fundamental form of M,respectively.We verify that there exists a positive constantγ(n)depending only on n such that if|H|≤γ(n)andβ(n,H)≤S≤β(n,H)+n/18,then S≡β(n,H)and M is a Clifford torus.Here,β(n,H)=n+n^(3)/2(n-1)H^(2)+n(n-2)/2(n-1)(1/2)n^(2)H^(4)+4(n-1)H^(2).

关 键 词:generalized Chern conjecture hypersurfaces with constant mean curvature rigidity theorem scalar curvature the second fundamental form 

分 类 号:O186.11[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象