检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:石开荣[1,2] 潘文智[1,3] 姜正荣 林金龙[1] 魏德敏 SHI Kairong;PAN Wenzhi;JIANG Zhengrong;LIN Jinlong;WEI Demin(School of Civil Engineering and Transportation,South China University of Technology,Guangzhou 510641,China;State Key Laboratory of Subtropical Building Science,South China University of Technology,Guangzhou 510641,China;Zhejiang Jinggong Steel Building Group Co.,Ltd,Shaoxing 312030,China)
机构地区:[1]华南理工大学土木与交通学院,广东广州510641 [2]华南理工大学亚热带建筑科学国家重点实验室,广东广州510641 [3]浙江精工钢结构集团有限公司,浙江绍兴312030
出 处:《建筑结构学报》2021年第7期85-94,共10页Journal of Building Structures
基 金:亚热带建筑科学国家重点实验室开放课题(2019ZB27);广州市科技计划项目(1563000257)。
摘 要:为弥补传统设计理念和优化方法的不足,促进空间结构的发展与创新,结合前沿优化理论,依据模拟植物生长算法(PGSA)的基本原理,提出基于生长空间限定与并行搜索的模拟植物生长算法(GSL&PS-PGSA),并与空间结构优化相结合,建立了基于GSL&PS-PGSA的空间结构优化方法。给出了相应的结构优化流程,并采用MATLAB及ANSYS二次开发语言APDL编制了优化程序。通过单层球面网壳截面优化和弦支穹顶预应力优化的典型空间结构算例分析,结果表明:所提出的GSL&PS-PGSA为算法提供了有效的终止机制,且具有高效的计算效率及全局搜索能力;与遗传算法(GA)、粒子群算法(PSO)、ANSYS自带优化方法以及其他改进PGSA算法等相比,GSL&PS-PGSA的优化效果更为显著且具有明显优势;所建立的基于GSL&PS-PGSA的空间结构优化方法,可适用于各类传统和新型空间结构体系的优化问题。In order to overcome the shortcomings of traditional design concepts and optimization methods, and to promote the development and innovation of spatial structures, a new plant growth simulation algorithm(PGSA) based on growth spatial limitation and parallel search(GSL&PS-PGSA) is proposed, which combines the frontier optimization theory with the basic principle of PGSA. An optimization method of spatial structures is then established based on GSL&PS-PGSA. The corresponding structural optimization process is given, and the optimization programs are compiled by MATLAB as well as the secondary development language APDL of ANSYS. The section optimization of typical single-layer spherical latticed shells and the prestress optimization of typical suspended domes are analyzed. The results show that the proposed algorithm provides an effective termination mechanism for the algorithm, and has high calculation efficiency and a global search capacity. Compared with the genetic algorithm(GA), particle swarm optimization(PSO), the embedded optimization method in ANSYS and other improved PGSA methods, GSL&PS-PGSA has more significant optimization effects, and its optimization results have obvious advantages. The proposed optimization method of spatial structures based on GSL&PS-PGSA can be applied to the optimization problems of various traditional and new spatial structure systems.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229