Data fusion methods in multimodal human computer dialog  被引量:1

在线阅读下载全文

作  者:Ming-Hao YANG Jian-Hua TAO 

机构地区:[1]National Laboratory of Pattern Recognition Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China [2]The Center for Excellence in Brain Science and Intelligent Technology of Chinese Academy of Sciences,Beijing 100190,China [3]University of Chinese Academy of Sciences,Beijing 100049,China

出  处:《Virtual Reality & Intelligent Hardware》2019年第1期21-38,共18页虚拟现实与智能硬件(中英文)

基  金:the National Natural Science Foundation of China(61873269,61425017,61332017,61831022);the National Key Research&Development Plan of China(2017YFB1002804).

摘  要:In multimodal human computer dialog,non-verbal channels,such as facial expression,posture,gesture,etc,combined with spoken information,are also important in the procedure of dialogue.Nowadays,in spite of high performance of users*single channel behavior computing,it is still great challenge to understand users1 intention accurately from their multimodal behaviors.One reason for this challenge is that we still need to improve multimodal information fusion in theories,methodologies and practical systems.This paper presents a review of data fusion methods in multimodal human computer dialog.We first introduce the cognitive assumption of single channel processing,and then discuss its implementation methods in human computer dialog;for the task of multi-modal information fusion,serval computing models are presented after we introduce the principle description of multiple data fusion.Finally,some practical examples of multimodal information fusion methods are introduced and the possible and important breakthroughs of the data fusion methods in future multimodal human-computer interaction applications are discussed.

关 键 词:Intention understanding Multimodal human computer dialog 

分 类 号:G35[文化科学—情报学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象