SySAP: a system-level predictor of deleterious single amino acid polymorphisms  

在线阅读下载全文

作  者:Tao Huang Chuan Wang Guoqing Zhang Lu Xie Yixue Li 

机构地区:[1]Key Laboratory of Systems Biology,Shanghai Institutes for Biological Sciences,Chinese Academy of Sciences,Shanghai 200031,China [2]Shanghai Center for Bioinformation Technology,Shanghai 200235,China

出  处:《Protein & Cell》2012年第1期38-43,共6页蛋白质与细胞(英文版)

基  金:by the National Basic Research Program of China(973 Program)(Grant Nos.2011CB910204,2010CB529206,and 2010CB912702);Research Program of the Chinese Academy of Sciences(KSCX2-EW-R-04,KSCX2-YW-R-190,2011KIP204);National Natural Science Foundation of China(Grant Nos.30900272 and 31070752);National Key Technology R&D Program in the 11th Five Year Plan of China(No.2008BAI64B01);National High-Tech R&D Program of China(863 Program)(Grant No.2009AA02Z304);National Scientific-Basic Special Fund(No.2009FY120100).

摘  要:Single amino acid polymorphisms(SAPs),also known as non-synonymous single nucleotide polymorphisms(nsSNPs),are responsible for most of human genetic diseases.Discriminate the deleterious SAPs from neutral ones can help identify the disease genes and understand the mechanism of diseases.In this work,a method of deleterious SAP prediction at system level was established.Unlike most existing methods,our method not only considers the sequence and structure information,but also the network information.The integration of network information can improve the performance of deleterious SAP prediction.To make our method available to the public,we developed SySAP(a System-level predictor of deleterious Single Amino acid Polymorphisms),an easy-to-use and high accurate web server.SySAP is freely available at http://www.biosino.org/SySAP/and http://lifecenter.sgst.cn/SySAP/.

关 键 词:deleterious single amino acid polymorphisms PREDICTOR web server 

分 类 号:O62[理学—有机化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象