H_(2)/H_(∞) Control for Stochastic Jump-Diffusion Systems with Markovian Switching  

在线阅读下载全文

作  者:WANG Meijiao MENG Qingxin SHEN Yang 

机构地区:[1]Business School,University of Shanghai for Science and Technology,Shanghai 200093,China [2]Department of Mathematical Sciences,Huzhou University,Zhejiang 313000,China [3]School of Risk&Actuarial Studies,University of New South Wales,Sydney,NSW 2052,Australia

出  处:《Journal of Systems Science & Complexity》2021年第3期924-954,共31页系统科学与复杂性学报(英文版)

基  金:supported by the National Natural Science Foundation of China under Grant No. 11871121;the Natural Science Foundation of Zhejiang Province for Distinguished Young Scholar under Grant No.LR15A010001。

摘  要:In this paper, a stochastic H2/H∞ control problem is investigated for Poisson jumpdiffusion systems with Markovian switching, which are driven by a Brownian motion and a Poisson random measure with the system parameters modulated by a continuous-time finite-state Markov chain.A stochastic jump bounded real lemma is proved, which reveals that the norm of the perturbation operator below a given threshold is equivalent to the existence of a global solution to a parameterized system of Riccati type differential equations. This result enables the authors to obtain sufficient and necessary conditions for the existence of H2/H∞ control in terms of two sets of interconnected systems of Riccati type differential equations.

关 键 词:H_(2)/H_(∞)control jump bounded real lemma jump-diffusion systems Markovian switching system of Riccati type differential equations 

分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象