基于双聚类方法的国际倒班相关文献研究热点分析  被引量:2

Documents related to international shift work based on bi-clustering method research hotspot analysis

在线阅读下载全文

作  者:冯会玲 范玲[2,3] FENG Huiling;FAN Ling(Department of Surgical Nursing,School of Nursing,Hebei University of Chinese Medicine,Shijiazhuang 050200,China;School of Nursing,China Medical University,Shenyang 110122,China;Department of Nursing,Shengjing Hospital of China Medical University,Shenyang 110004,China)

机构地区:[1]河北中医学院护理学院外科护理教研室,石家庄050200 [2]中国医科大学护理学院,沈阳110122 [3]中国医科大学附属盛京医院护理部,沈阳110004

出  处:《中国医科大学学报》2021年第7期625-631,共7页Journal of China Medical University

基  金:河北省科学技术厅2018年省重点研发计划指导项目(辽科发[2018]24号)。

摘  要:目的对PubMed中倒班相关文献的高频主要主题词和副主题词进行共词聚类分析,获取主题词之间的关联规则,并对该领域内主题词之间的潜在语义关系进行挖掘,分析倒班相关主题的研究热点。方法运用BICOMS和gCLUTO软件对PubMed数据库中倒班相关文献进行处理,获得双聚类矩阵图,经分析后得到该领域近年来的研究主题方向与热点。结果通过聚类簇山峰图谱、可视化双聚类词篇矩阵,结合语义分析,结果显示倒班相关研究以八大主题为主。结论通过文献的共词聚类分析,能为该领域研究人员了解现状以及开展相关研究提供参考。Objective In this study,we conduct co-word clustering analysis on the high-frequency main topic words and subtopic words in the shift-related literature from PubMed.Further,to obtain the association rules between the topic words,and the potential between the topic words in the field,semantic relationship mining and analysis of international research hotspots related to shifts was conducted.Methods We used BICOMS and gCLUTO software to process the shift-related literature in the PubMed database and obtained the biclustering matrix diagram,the research topic directions,and hot spots in this field(in recent years)after analysis.Results Through clustering mountain peak maps and visualizing bi-clustering word-text matrix,combined with semantic analysis,we found that the shift-related research focuses on eight themes.Conclusion The co-word cluster analysis of the literature can provide a reference for researchers in this field to understand the status quo to be able to carry out related research.

关 键 词:倒班 研究热点 双聚类分析 文本挖掘 

分 类 号:R47[医药卫生—护理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象