对等式结构下的航迹关联算法  被引量:2

Track Association Algorithm Based on Peer-to-Peer Structure

在线阅读下载全文

作  者:张天舒 周正 李寅龙 卢雨 ZHANG Tianshu;ZHOU Zheng;LI Yinlong;LU Yu(Naval Aviation University,Yantai 264001,China)

机构地区:[1]海军航空大学,山东烟台264001

出  处:《兵器装备工程学报》2021年第6期223-229,共7页Journal of Ordnance Equipment Engineering

基  金:国防科技卓越青年人才基金项目(2017-JCJQ-ZQ-003);泰山学者工程专项经费课题(ts201712072)。

摘  要:将对等式结构应用于多传感器目标数据关联,建立了对等式结构下的航迹关联模型。针对丢失航迹点问题,利用区间灰数覆盖丢失航迹点,通过2-范数计算区间灰数距离建立区实混合序列,利用修正灰关联法进行航迹关联。比较分析了不同环境、不同传输方式对航迹关联的影响,且在卡尔曼滤波基础上提出有效评价航迹质量的新形式。与传统算法相比,所提算法无需时间配准,在强杂波、航迹交叉、分岔、合并情况下均有较强的鲁棒性。通过仿真可知,该文所提算法在倒序传输方式下正确关联率最优,传输9个数据点以上时可保持稳定关联。所提出的滤波航迹质量与真实航迹质量的误差不超过15m,能够有效评价航迹质量。Applying the pair equality structure to multi-sensor target data association,the track association model under the pair equality structure was established.To solve the problem of lost track points,the interval grey number was used to cover the lost track points,and the interval grey number distance was calculated by 2-norm to establish the real mixed sequence,and the modified grey correlation method was used to carry out the track correlation.The effects of different environments and transmission modes on track correlation were compared and analyzed,and a new form of effective track quality evaluation based on Kalman filtering was proposed.Compared with the traditional algorithm,the proposed algorithm does not require time registration and is robust under the conditions of strong clutter,track crossing,bifurcation and merger.Simulation results show that the algorithm in this paper has the optimal correct correlation rate under the reverse transmission mode,and the stable correlation can be maintained when transmitting over 9 data points.The error between the proposed filtering track quality and the real track quality is not more than 15 meters,which can effectively evaluate the track quality.

关 键 词:对等式结构 航迹关联 灰关联 区实混合 航迹质量 

分 类 号:TN957[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象