检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jianfei Huang Yifa Tang Luis Vázquez
机构地区:[1]LSEC,ICMSEC,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China [2]Departamento deMatemática Aplicada,Facultad de Informática,Instituto deMatemática Interdisciplinar(IMI),Universidad Complutense de Madrid,28040-Madrid,Spain
出 处:《Numerical Mathematics(Theory,Methods and Applications)》2012年第2期229-241,共13页高等学校计算数学学报(英文版)
基 金:supported by the State Key Laboratory of Scientific and Engineering Computing,Chinese Academy of Sciences and by Hunan Key Laboratory for Computation and Simulation in Science and Engineering,by National Natural Science Foundation of China(Grant Nos.60931002,11001072 and 11026154);partially by the Spanish Ministry of Science and Innovation under Grant AYA2009-14212-C05-05.
摘 要:The block-by-block method,proposed by Linz for a kind of Volterra integral equations with nonsingular kernels,and extended by Kumar and Agrawal to a class of initial value problems of fractional differential equations(FDEs)with Caputo derivatives,is an efficient and stable scheme.We analytically prove and numerically verify that this method is convergent with order at least 3 for any fractional order indexα>0.
关 键 词:Fractional differential equation Caputo derivative block-by-block method convergence analysis
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143