Convergence Analysis of a Block-by-Block Method for Fractional Differential Equations  被引量:11

在线阅读下载全文

作  者:Jianfei Huang Yifa Tang Luis Vázquez 

机构地区:[1]LSEC,ICMSEC,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China [2]Departamento deMatemática Aplicada,Facultad de Informática,Instituto deMatemática Interdisciplinar(IMI),Universidad Complutense de Madrid,28040-Madrid,Spain

出  处:《Numerical Mathematics(Theory,Methods and Applications)》2012年第2期229-241,共13页高等学校计算数学学报(英文版)

基  金:supported by the State Key Laboratory of Scientific and Engineering Computing,Chinese Academy of Sciences and by Hunan Key Laboratory for Computation and Simulation in Science and Engineering,by National Natural Science Foundation of China(Grant Nos.60931002,11001072 and 11026154);partially by the Spanish Ministry of Science and Innovation under Grant AYA2009-14212-C05-05.

摘  要:The block-by-block method,proposed by Linz for a kind of Volterra integral equations with nonsingular kernels,and extended by Kumar and Agrawal to a class of initial value problems of fractional differential equations(FDEs)with Caputo derivatives,is an efficient and stable scheme.We analytically prove and numerically verify that this method is convergent with order at least 3 for any fractional order indexα>0.

关 键 词:Fractional differential equation Caputo derivative block-by-block method convergence analysis 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象