Convergence Estimates for Some Regularization Methods to Solve a Cauchy Problem of the Laplace Equation  

在线阅读下载全文

作  者:T.Wei H.H.Qin H.W.Zhang 

机构地区:[1]School of Mathematics and Statistics,Lanzhou University,P.R.China

出  处:《Numerical Mathematics(Theory,Methods and Applications)》2011年第4期459-477,共19页高等学校计算数学学报(英文版)

基  金:supported by the NSF of China(10971089);the Fundamental Research Funds for the Central Universities(lzujbky-2010-k10).

摘  要:In this paper,we give a general proof on convergence estimates for some regularization methods to solve a Cauchy problem for the Laplace equation in a rectangular domain.The regularization methods we considered are:a non-local boundary value problem method,a boundary Tikhonov regularization method and a generalized method.Based on the conditional stability estimates,the convergence estimates for various regularization methods are easily obtained under the simple verifications of some conditions.Numerical results for one example show that the proposed numerical methods are effective and stable.

关 键 词:Cauchy problem Laplace equation regularization methods convergence estimates 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象