Quadrature Based Optimal Iterative Methods with Applications in High-Precision Computing  

在线阅读下载全文

作  者:Sanjay Kumar Khattri 

机构地区:[1]Stord/Haugesund University College,Department of Engineering,Haugesund,Norway

出  处:《Numerical Mathematics(Theory,Methods and Applications)》2012年第4期592-601,共10页高等学校计算数学学报(英文版)

摘  要:We present a simple yet effective and applicable scheme,based on quadrature,for constructing optimal iterative methods.According to the,still unproved,Kung-Traub conjecture an optimal iterative method based on n+1 evaluations could achieve a maximum convergence order of 2n.Through quadrature,we develop optimal iterative methods of orders four and eight.The scheme can further be applied to develop iterative methods of even higher orders.Computational results demonstrate that the developed methods are efficient as compared with many well known methods.

关 键 词:Iterative methods fourth order eighth order QUADRATURE NEWTON convergence nonlinear OPTIMAL 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象