Superconvergence and Asymptotic Expansions for Bilinear Finite Volume Element Approximations  

在线阅读下载全文

作  者:Cunyun Nie Shi Shu Haiyuan Yu Juan Wu 

机构地区:[1]Department of Mathematics and Physics,Hunan Institute of Engineering,Hunan 411104,China [2]Hunan Key Laboratory for Computation&Simulation in Science and Engineering and Key Laboratory of Intelligent Computing&Information Processing of Ministry of Education,Xiangtan University,Hunan 411105,China

出  处:《Numerical Mathematics(Theory,Methods and Applications)》2013年第2期408-423,共16页高等学校计算数学学报(英文版)

基  金:supported by NSFC Project(Grant No.11031006,91130002,11171281);the Key Project of Scientific Research Fund of Hunan Provincial Science and Technology Department(Grant No.2011FJ2011);Specialized research Fund for the Doctoral Program of Higher Education(Grant No.20124301110003);Program for Changjiang Scholars and Innovative Research Team in University of China(No.IRT1179);Hunan Provincial Natural Science Foundation of China(Grant No.12JJ3010)。

摘  要:Aiming at the isoparametric bilinear finite volume element scheme,we initially derive an asymptotic expansion and a high accuracy combination formula of the derivatives in the sense of pointwise by employing the energy-embedded method on uniform grids.Furthermore,we prove that the approximate derivatives are convergent of order two.Finally,numerical examples verify the theoretical results.

关 键 词:Isoparametric bilinear finite volume element scheme asymptotic expansion high accuracy combination formula SUPERCONVERGENCE 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象