Simultaneous Approximation of Sobolev Classes by Piecewise Cubic Hermite Interpolation  被引量:2

在线阅读下载全文

作  者:Guiqiao Xu Zheng Zhang 

机构地区:[1]Department of Mathematics,Tianjin Normal University,Tianjin,300387,P.R.China

出  处:《Numerical Mathematics(Theory,Methods and Applications)》2014年第3期317-333,共17页高等学校计算数学学报(英文版)

基  金:supported by the National Natural Science Foundations of China(Grant No.11271263).

摘  要:For the approximation in L_(p)-norm,we determine the weakly asymptotic orders for the simultaneous approximation errors of Sobolev classes by piecewise cubic Hermite interpolation with equidistant knots.For p=1,∞,we obtain its values.By these results we know that for the Sobolev classes,the approximation errors by piecewise cubic Hermite interpolation are weakly equivalent to the corresponding infinite-dimensional Kolmogorov widths.At the same time,the approximation errors of derivatives are weakly equivalent to the corresponding infinite-dimensional Kolmogorov widths.

关 键 词:Piecewise cubic Hermite interpolation L_(p)-norm simultaneous approximation equidistant knot infinite-dimensional Kolmogorov width 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象