Convergence and Stability of the Truncated Euler-Maruyama Method for Stochastic Differential Equations with Piecewise Continuous Arguments  被引量:3

在线阅读下载全文

作  者:Yidan Geng Minghui Song Yulan Lu Mingzhu Liu 

机构地区:[1]Department of Mathematics,Harbin Institute of Technology,Harbin 150001,China [2]Institute of Computational Mathematics and Scientific/Engineering Computing,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China

出  处:《Numerical Mathematics(Theory,Methods and Applications)》2021年第1期194-218,共25页高等学校计算数学学报(英文版)

基  金:This work is supported by the National Natural Science Foundation of China(No.11671113);the National Postdoctoral Program for Innovative Talents(No.BX20180347).

摘  要:In this paper,we develop the truncated Euler-Maruyama(EM)method for stochastic differential equations with piecewise continuous arguments(SDEPCAs),and consider the strong convergence theory under the local Lipschitz condition plus the Khasminskii-type condition.The order of convergence is obtained.Moreover,we show that the truncated EM method can preserve the exponential mean square stability of SDEPCAs.Numerical examples are provided to support our conclusions.

关 键 词:Stochastic differential equations with piecewise continuous argument local Lips-chitz condition Khasminskii-type condition truncated Euler-Maruyama method convergence and stability 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象