检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹健 冯新[1] 吉晓燕 陆小华[1] CAO Jian;FENG Xin;JI Xiaoyan;LU Xiaohua(State Key Laboratory of Materials-Oriented Chemical Engineering,Nanjing Tech University,Nanjing 210009,Jiangsu,China;Energy Engineering,Division of Energy Science,LuleåUniversity of Technology,Luleå97187,Sweden)
机构地区:[1]南京工业大学材料化学工程国家重点实验室,江苏南京210009 [2]吕勒奥工业大学能源工程系,瑞典吕勒奥97187
出 处:《化工学报》2021年第7期3780-3787,共8页CIESC Journal
基 金:国家自然科学基金海外及港澳学者合作研究项目(21729601)。
摘 要:作为低温余热发电的首选方案,有机朗肯循环 (ORC) 得到广泛的工业应用。混合工质与双压蒸发结合 的策略被证实能够大幅提升 ORC系统热效率,但更多级蒸发对循环性能的影响仍未知。因此,提出基于混合工 质的多级蒸发 ORC (MZORC) 概念,通过 分析构建蒸发过程的传热极限模型,结合 Aspen Plus对基本 ORC (BORC)、两级蒸发和三级蒸发 MZORC 进行过程模拟,揭示了系统循环性能的理论极限。研究结果表明: MZORC能够降低循环工质蒸发过程带来的热量损失及 流耗散率;423.15 K热源、298.15 K环境温度工况下, 三级蒸发 MZORC 的净输出功较 BORC 有 38.6% 的显著提升;增加蒸发级数能够使系统性能更接近理论极限, BORC、两级蒸发和三级蒸发 MZORC系统净输出功分别能够达到理论极限值的 65.0%、79.0%及 90.1%。Organic Rankine cycle (ORC) has been widely used as the primary choice to realize power generation from low temperature waste-heat, and the combination of zeotropic mixture and dual-pressure evaporation has been evidenced their potential to significantly improve the thermal efficiency of ORC. However, it is still unclear how the multiple stages of evaporation affect the performance. In this study, a multi-pressure evaporation ORC based on zeotropic mixture (MZORC) was proposed, a heat transfer limit model was developed based on the entransy analysis, and the processes of ORC (BORC), dual-pressure evaporation MZORC and tri-pressure evaporation MZORC were simulated with Aspen Plus. The results show that MZORC can improve the performance by reducing both the heat loss and entransy dissipation caused by the evaporation. When the heat source is 423.15 K and the ambient temperature is 298.15 K, the net output power of tri-pressure evaporation MZORC can be improved by 38.6% compared with BORC, and those of BORC, dual-pressure evaporation MZORC, and tri-pressure evaporation MZORC can reach 65.0%, 79.0% and 90.1% of the theoretical limit, respectively, i. e., increasing the number of evaporation units will result in performance enhancement, approaching the theoretical limit.
关 键 词:有机朗肯循环 混合工质 多级蒸发 [火积]分析 传热极限模型 过程模拟 理论极限
分 类 号:TK11[动力工程及工程热物理—热能工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145