基于客流量的城市轨道交通网络站点重要度评估方法  被引量:2

Evaluation Method of Station Importance of Urban Rail Transit Network based on Passenger Flow

在线阅读下载全文

作  者:徐澍锟 初宪武[1,2] 王运明 李卫东 XU Shukun;CHU Xianwu;WANG Yunming;LI Weidong(School of Electrical and Information Engineering,Dalian Jiaotong University,Dalian 116028,China;Liaoning Railway Logistics Internet of Things Engineering Technology Research Center,Dalian 116028,China)

机构地区:[1]大连交通大学电气信息工程学院,辽宁大连116028 [2]辽宁铁路物流物联网工程技术研究中心,辽宁大连116028

出  处:《大连交通大学学报》2021年第4期18-22,37,共6页Journal of Dalian Jiaotong University

基  金:国家自然科学基金资助项目(61471080);辽宁省教育厅科学研究计划资助项目(JDL2019019,JDL2020002)。

摘  要:针对轨道交通网络中现有的站点重要度评估方法精度低的问题,提出一种基于客流量的城市轨道交通网络站点重要度评估方法,筛选出城市轨道交通网络的重要站点。采用Space L方法构建轨道交通加权网络模型,通过分析客流量比例系数和节点效率对站点的作用,设计站点重要度贡献矩阵,以纽约轨道交通网络为例,采用最大连通子图比例和网络平均效率评价指标分析站点的重要度.研究结果表明:与传统的评估方法相比,引入客流量因素可以显著提高重要站点的评估精度。该方法可为实现站点的高效可靠运行提供技术支持,具有良好的应用前景.Aiming at the problem of low accuracy of existing station importance assessment methods in rail transit networks, a station importance assessment method for urban rail transit networks based on passenger flow is proposed, and important stations of urban rail transit networks are selected. Space L method was used to build a rail transit weighted network model, and the station importance contribution matrix was designed by analyzing the effect of passenger flow proportional coefficients and node efficiency on stations. Taking the New York rail transit network as an example, the maximum connected subgraph ratio and the average network efficiency are analyzed. The research results show that compared with traditional evaluation methods, the introduction of passenger flow factors can significantly improve the evaluation accuracy of important stations. This method can provide technical support for the efficient and reliable operation of the station and has good application prospects.

关 键 词:城市轨道交通网络 重要度评估 客流量 重要度贡献矩阵 

分 类 号:U239.5[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象