检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jun-ying ZHANG Xiao-feng LIU Ri-quan ZHANG Hang-WANG
机构地区:[1]Department of Mathematics,Taiyuan University of Technology,Taiyuan 030024,China [2]College of Data Science,Taiyuan University of Technology,Taiyuan 030024,China [3]School of Finance and Statistics,East China Normal University,Shanghai 200241,China [4]Department of Mathematics,Shanxi Datong University,Datong 037009,China
出 处:《Acta Mathematicae Applicatae Sinica》2021年第3期590-601,共12页应用数学学报(英文版)
基 金:by the National Natural Science Foundation of China(Nos.11171112,11201190,11101158);Doctoral Fund of Ministry of Education of China(20130076110004)and the 111 Project of China(B14019).
摘 要:In this paper we propose the Gini correlation screening(GCS)method to select the important variables with ultrahigh dimensional data.The new procedure is based on the Gini correlation coefficient via the covariance between the response and the rank of the predictor variables rather than the Pearson correlation and the Kendallτcorrelation coefficient.The new method does not require imposing a specific model structure on regression functions and only needs the condition which the predictors and response have continuous distribution function.We demonstrate that,with the number of predictors growing at an exponential rate of the sample size,the proposed procedure possesses consistency in ranking,which is both useful in its own right and can lead to consistency in selection.The procedure is computationally efficient and simple,and exhibits a competent empirical performance in our intensive simulations and real data analysis.
关 键 词:ultrahigh dimension Gini correlation coefficient variable screening feature ranking
分 类 号:O212[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.236