检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ali Atabaigi
机构地区:[1]Department of Mathematics,Razi University,Kermanshah,Iran
出 处:《International Journal of Biomathematics》2021年第1期151-174,共24页生物数学学报(英文版)
摘 要:This paper studies the dynamics of the generalist predator–prey systems modeled in[E.Alexandra,F.Lutscher and G.Seo,Bistability and limit cycles in generalist predator–prey dynamics,Ecol.Complex.14(2013)48–55].When prey reproduces much faster than predator,by combining the normal form theory of slow-fast systems,the geometric singular perturbation theory and the results near non-hyperbolic points developed by Krupa and Szmolyan[Relaxation oscillation and canard explosion,J.Differential Equations174(2)(2001)312–368;Extending geometric singular perturbation theory to nonhyperbolic points—fold and canard points in two dimensions,SIAM J.Math.Anal.33(2)(2001)286–314],we provide a detailed mathematical analysis to show the existence of homoclinic orbits,heteroclinic orbits and canard limit cycles and relaxation oscillations bifurcating from the singular homoclinic cycles.Moreover,on global stability of the unique positive equilibrium,we provide some new results.Numerical simulations are also carried out to support the theoretical results.
关 键 词:Canard cycle relaxation oscillation generalist predator prey singular perturbation HOMOCLINIC HETEROCLINIC
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38