检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周序林[1] 张显成[2] 何均洪[3] ZHOU Xu-lin;ZHANG Xian-cheng;HE Jun-hong(School of Chinese Languages and Literatures,Southwest Minzu University,Chengdu 610041,China;Institute of Chinese Languages and Literature,Southwest University,Beibei 400715,China;School of Commercial Aircraft,Civil Aviation Flight University of China,Guanghan 618307,China)
机构地区:[1]西南民族大学中国语言文学学院,四川成都610041 [2]西南大学汉语言文献研究所,重庆北陪400715 [3]中国民用航空飞行学院大飞机学院,四川广汉618307
出 处:《西南民族大学学报(自然科学版)》2021年第4期440-444,共5页Journal of Southwest Minzu University(Natural Science Edition)
基 金:国家社科基金西部项目“简牍数学文献集成及校释”(18XTQ004);西南民族大学中央高校基本科研业务费专项资金资助项目“张家山汉简《算数书》海外英译本研究”(2020SYB24)。
摘 要:学界普遍认为汉简《算数书》"少广术"中没有求最小公倍数法.这是对《算数书》"少广术"的误解.利用《九章算术》"少广术"求最小公倍数算法与《算数书》"少广术"相关术文进行对比分析,发现《算数书》"少广术"有求最小公倍数的算法.求最小公倍数法最迟在公元前186年已经成熟,这在中国乃至世界数学史上具有重要意义.It was widely believed that it was the shaoguang shu of the Jiuzhang suanshu(Nine Chapters on the Art of Mathematics), not that of the Suanshu shu that had the method for finding LCM. The method for finding LCM in the former was compared to the corresponding parts of the latter, and an analysis showed that the shaoguang shu of the Suanshu shu has the same method for finding LCM as that of the Jiuzhang suanshu. This is significant in the history of mathematics in China and even in the world because the method for finding LCM had been well established at least by the time when the Suanshu shu was compiled in no later than 186 B.C.E.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49